The phenomenon of slope instability in the Monte Conero promontory (Marche, Italy) is analyzed by integrating satellite interferometric monitoring (InSAR) with hydro-climatic signals, focusing on extreme rainfall events. PS-InSAR time series from COSMO-SkyMed (2011–2014) and Sentinel-1 (2018–2022) ascending geometries were combined with in-situ inclinometer measurements through: (i) time-series classification with PS-Time software to identify linear/bilinear trends and breakpoints; (ii) projection from V_LOS to V_SLOPE to align velocities with the slope direction; and (iii) calibration and statistical validation. Results highlight temporal and metric consistency between InSAR and inclinometer data (RMSE ≈ 1.5 mm; NSE ≈ 0.8), showing that slope activity has been ongoing since at least the mid-2000s, with marked accelerations in 2012–2013. Piezometric data reveal a distinct response between the upper and lower slope sectors, suggesting a divergence between rapid surface processes and long-term hydraulic loading. For the climatic component, local rainfall series (Osimo/Monteragolo, Loreto, Svarchi) were analyzed using percentile-based indices (95th–99th) following ETCCDI logic, to define and apply the ERPI (Extreme Rainfall Periodic Index). This new annual index quantifies the contribution of extreme rainfall to annual totals while accounting for long-term precipitation anomalies. ERPI was tested both on the coastal slope and at an inland subsite (Betelico), equipped with multi-depth TDR probes and a piezometer (GWL), to analyze hydrological response and recharge dynamics. The integration highlights the increasing concentration of extreme events and their influence in altering hydrological signals, which may appear counterintuitive (e.g., reduced deep recharge and declining groundwater levels) and are not captured by cumulative indices on monthly/annual scales (e.g., SPI-12). The proposed approach provides a methodological framework for studying slope kinematics in the context of climate change and extremes, enhancing process-based interpretation of risk in Mediterranean coastal environments.
Il fenomeno d’instabilità dei versanti nel promontorio del Monte Conero (Marche, Italia) viene analizzato integrando monitoraggio interferometrico satellitare (InSAR) e segnali idro-climatici con focus sugli eventi di precipitazione estrema. Si sono combinate serie PS-InSAR derivanti da COSMO-SkyMed (2011–2014) e Sentinel-1 (2018–2022) in geometria ascendente con misure inclinometriche in sito, adottando: (i) classificazione delle serie tramite Software (PS-Time) per l’individuazione di trend lineari/bilineari e breakpoint; (ii) proiezione V_LOS→V_SLOPE per riportare le velocità lungo la massima pendenza; (iii) calibrazione e validazione statistica. I risultati evidenziano coerenza temporale e metrica tra InSAR e inclinometri (RMSE ≈ 1,5 mm; NSE ≈ 0,8), e mostrano come vi sia attività nei movimenti a partire da almeno metà anni 2000, con accelerazioni nel biennio 2012–2013. La piezometria evidenzia invece una risposta ben distinta tra la porzione superiore e quella inferiore del versante, suggerendo una divergenza tra processi superficiali rapidi e carico idraulico di lungo periodo. Parallelamente, per la componente climatica dell’analisi si sono utilizzate serie pluviometriche locali (Osimo/Monteragolo, Loreto, Svarchi) e un set di indici percentile-based (95°–99°) in logica ETCCDI per definire e applicare l’ERPI (Extreme Rainfall Periodic Index), un nuovo indice annuale che pesa il contributo delle piogge estreme al totale annuo, in considerazione dell’anomalia pluviometrica sul lungo termine. Tale ERPI è stato quindi testato sia sul versante costiero, sia in un sottosito interno (Betelico) a sua volta strumentato con TDR multi-profondità e piezometro (GWL), per l’analisi delle dinamiche di risposta idrologica e di ricarica nell’area. L’integrazione mette in evidenza la crescente concentrazione degli eventi definibili estremi, e la loro influenza nell’alterare i segnali idrologici, apparentemente controintuitivi (e.g. riduzione di ricarica profonda e trend piezometrico negativo) e non catturati da indici cumulativi su scale mensili/annuali (e.g. SPI-12). L’approccio proposto fornisce una base metodologica per lo studio della cinematica di versante in un contesto di cambiamento climatico e quindi di estremi, migliorando l’interpretazione process-based del rischio in ambienti costieri mediterranei.
Estremi idrologici e dinamiche di versante: sviluppo e applicazione dell’indice ERPI, e analisi InSAR, nel caso del Monte Conero
MATTIOLI, GIORGIO
2024/2025
Abstract
The phenomenon of slope instability in the Monte Conero promontory (Marche, Italy) is analyzed by integrating satellite interferometric monitoring (InSAR) with hydro-climatic signals, focusing on extreme rainfall events. PS-InSAR time series from COSMO-SkyMed (2011–2014) and Sentinel-1 (2018–2022) ascending geometries were combined with in-situ inclinometer measurements through: (i) time-series classification with PS-Time software to identify linear/bilinear trends and breakpoints; (ii) projection from V_LOS to V_SLOPE to align velocities with the slope direction; and (iii) calibration and statistical validation. Results highlight temporal and metric consistency between InSAR and inclinometer data (RMSE ≈ 1.5 mm; NSE ≈ 0.8), showing that slope activity has been ongoing since at least the mid-2000s, with marked accelerations in 2012–2013. Piezometric data reveal a distinct response between the upper and lower slope sectors, suggesting a divergence between rapid surface processes and long-term hydraulic loading. For the climatic component, local rainfall series (Osimo/Monteragolo, Loreto, Svarchi) were analyzed using percentile-based indices (95th–99th) following ETCCDI logic, to define and apply the ERPI (Extreme Rainfall Periodic Index). This new annual index quantifies the contribution of extreme rainfall to annual totals while accounting for long-term precipitation anomalies. ERPI was tested both on the coastal slope and at an inland subsite (Betelico), equipped with multi-depth TDR probes and a piezometer (GWL), to analyze hydrological response and recharge dynamics. The integration highlights the increasing concentration of extreme events and their influence in altering hydrological signals, which may appear counterintuitive (e.g., reduced deep recharge and declining groundwater levels) and are not captured by cumulative indices on monthly/annual scales (e.g., SPI-12). The proposed approach provides a methodological framework for studying slope kinematics in the context of climate change and extremes, enhancing process-based interpretation of risk in Mediterranean coastal environments.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Giorgio_1_Finale.pdf
accesso aperto
Dimensione
4.35 MB
Formato
Adobe PDF
|
4.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/23096