Physical activity is any body movement produced by skeletal muscle that requires energy expenditure. Sport is a physical activity that involves competitive situations and is based on rules. Sports can be classified into static and dynamic, based on mechanical action, and aerobic and anaerobic, based on the type of muscle metabolism. The constant practice of a sporting activity is able to determine morphological and functional changes affecting the various organs and systems of the human body. Any muscular work requires a greater supply of O2 and energy substrates in the most engaged muscle groups. The apparatus that plays a fundamental role in meeting this request is the cardio-circulatory system which is subjected to a large number of risks. Sports can trigger acute cardiac events, such as sudden sports death. It is therefore essential to subject the athlete to periodic cardiological screening. The purpose of this paper is to study an advanced method for the analysis of heart rate variability through the use of non-linear methods, especially through the Poincaré diagram. The Poincaré diagram is a graphical representation of the correlation between successive RR intervals. The graphic obtained is characterized by two parameters, SD1 and SD2, which are respectively indicative of short and long term cardiac variability. For this study, the running data contained in the Sport Database of the Cardiovascular Bioengeineering Lab were analyzed. The data were collected with the Zephyr BioHarness 3.0 sensor, a wearable sensor capable of recording the electrocardiographic trace, heart rate, respiratory rate and other derived parameters. For each subject the parameters SD1, SD2 and their relationships were evaluated through two methods: Matlab and Kubios. Once all the values were obtained, the correlation coefficients were calculated in order to assess the reliability of the two methods used. Although the values of SD1, SD2 and their ratios were different for the two methods, the correlation coefficients showed that the data are perfectly correlated, in fact all the coefficients are between 0.75 and 1. This implies that both approaches are valid.
Per attività fisica si intende un qualsiasi movimento corporeo, prodotto dal muscolo scheletrico, che richiede dispendio di energia. Lo sport è un’attività fisica che comporta situazioni competitive e si basa su regole. Gli sport possono essere classificati in statici e dinamici, in base all’azione meccanica, e in aerobici e anaerobici, in base al tipo di metabolismo muscolare. La pratica costante di un’attività sportiva è in grado di determinare modificazioni morfologiche e funzionali a carico dei vari organi e apparati del corpo umano. Qualsiasi lavoro muscolare richiede un maggior apporto di O2 e di substrati energetici nei distretti muscolari più impegnati. L’apparato che riveste un ruolo fondamentale per soddisfare tale richiesta è l’apparato cardiocircolatorio il quale viene sottoposto ad un numero elevato di rischi. Lo sport può scatenare eventi cardiaci acuti, quali morte improvvisa da sport. Risulta quindi fondamentale sottoporre l’atleta a screening cardiologici periodici. Lo scopo di questo elaborato è quello di studiare un metodo avanzato per l’analisi della variabilità del ritmo cardiaco attraverso l’utilizzo di metodi non lineari in particolar modo attraverso il diagramma di Poincaré. Il diagramma di Poincaré è una rappresentazione grafica della correlazione tra intervalli RR successivi. La nuvola di punti ottenuta è caratterizzata da due parametri, SD1 e SD2, i quali sono rispettivamente indicativi della variabilità cardiaca a breve e lungo termine. Per questo studio sono stati analizzati i dati relativi alla corsa contenuti nel database Sport Database del Cardiovascular Bioengeineering Lab. I dati sono stati raccolti con il sensore BioHarness 3.0 della Zephyr, un sensore indossabile in grado di registrare il tracciato elettrocardiografico, la frequenza cardiaca, la frequenza respiratoria e altri parametri derivati. Per ogni soggetto sono stati valutati i parametri SD1, SD2 e i loro rapporti attraverso due metodi: Matlab e Kubios. Una volta ottenuti tutti i valori sono stati calcolati i coefficienti di correlazione al fine di valutare l’attendibilità dei due metodi utilizzati. Nonostante i valori di SD1, SD2 e i loro rapporti fossero diversi per i due metodi, i coefficienti di correlazione hanno dimostrato che i dati sono perfettamente correlati, infatti tutti i coefficienti sono compresi tra 0,75 e 1. Questo implica che entrambi gli approcci sono validi.
ANALISI NON LINEARE DELLA FREQUENZA CARDIACA DURANTE LA CORSA
GIAMBARTOLOMEI, AURORA
2019/2020
Abstract
Physical activity is any body movement produced by skeletal muscle that requires energy expenditure. Sport is a physical activity that involves competitive situations and is based on rules. Sports can be classified into static and dynamic, based on mechanical action, and aerobic and anaerobic, based on the type of muscle metabolism. The constant practice of a sporting activity is able to determine morphological and functional changes affecting the various organs and systems of the human body. Any muscular work requires a greater supply of O2 and energy substrates in the most engaged muscle groups. The apparatus that plays a fundamental role in meeting this request is the cardio-circulatory system which is subjected to a large number of risks. Sports can trigger acute cardiac events, such as sudden sports death. It is therefore essential to subject the athlete to periodic cardiological screening. The purpose of this paper is to study an advanced method for the analysis of heart rate variability through the use of non-linear methods, especially through the Poincaré diagram. The Poincaré diagram is a graphical representation of the correlation between successive RR intervals. The graphic obtained is characterized by two parameters, SD1 and SD2, which are respectively indicative of short and long term cardiac variability. For this study, the running data contained in the Sport Database of the Cardiovascular Bioengeineering Lab were analyzed. The data were collected with the Zephyr BioHarness 3.0 sensor, a wearable sensor capable of recording the electrocardiographic trace, heart rate, respiratory rate and other derived parameters. For each subject the parameters SD1, SD2 and their relationships were evaluated through two methods: Matlab and Kubios. Once all the values were obtained, the correlation coefficients were calculated in order to assess the reliability of the two methods used. Although the values of SD1, SD2 and their ratios were different for the two methods, the correlation coefficients showed that the data are perfectly correlated, in fact all the coefficients are between 0.75 and 1. This implies that both approaches are valid.File | Dimensione | Formato | |
---|---|---|---|
PDFA_Tesi_Aurora_Giambartolomei.pdf
Open Access dal 30/10/2023
Descrizione: PDF/A tesi
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/3218