Studente DI LELLO, ALESSIO
Facoltà/Dipartimento Dipartimento Ingegneria dell'Informazione
Corso di studio BIOMEDICAL ENGINEERING
Anno Accademico 2020
Data dell'esame finale 2021-10-25
Titolo italiano A machine-learning approach to EMG-based classification of gait phases and sub-phases.
Titolo inglese A machine-learning approach to EMG-based classification of gait phases and sub-phases.
Abstract in italiano In the present study, a recurrent neural network approach is proposed for the classification of four gait sub phases of the gait cycle (Heel contact, flat foot contact, push off and swing phase) and the consequent prediction of gait events (Heel Strike, Mid foot strike, heel rise and toe off event), considering only sEMG signals as input to the model. To this, sEMG signals from Tibialis Anterior, Gastrocnemius Lateralis, Rectus Femoris, Vastus Lateralis, and Hamstring muscles were acquired from both legs of 30 healthy subjects walking barefoot on the floor for about 5 min at their own pace following an eight-shaped path on the ground.
Abstract in inglese In the present study, a recurrent neural network approach is proposed for the classification of four gait sub phases of the gait cycle (Heel contact, flat foot contact, push off and swing phase) and the consequent prediction of gait events (Heel Strike, Mid foot strike, heel rise and toe off event), considering only sEMG signals as input to the model. To this, sEMG signals from Tibialis Anterior, Gastrocnemius Lateralis, Rectus Femoris, Vastus Lateralis, and Hamstring muscles were acquired from both legs of 30 healthy subjects walking barefoot on the floor for about 5 min at their own pace following an eight-shaped path on the ground.
Relatore SCALISE, LORENZO
Controrelatore DI NARDO, FRANCESCO
MORBIDONI, CHRISTIAN
Appare nelle tipologie: Laurea specialistica, magistrale, ciclo unico
File in questo prodotto:
File Descrizione Dimensione Formato  
Tesi Alessio Di Lello.pdf   fino a2023-10-25 Tesi Alessio Di Lello 2.6 MB Adobe PDF
Frontespizio Firmato.pdf   fino a2023-10-25 Frontespizio con firma. 119.21 kB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.12075/517